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Abstract. We investigate the process of ripple formation when a sand bed is submitted to a steady and
turbulent liquid flow. The sand transport dynamics is described in terms of a simple relaxation law which
accounts for the fact that the transport rate does not adapt instantaneously to its equilibrium value. The
equilibrium sand flux is evaluated using a standard law based on the estimation of the flow shear stress
calculated at the sand bed surface. The latter is estimated from an analytical resolution of the flow over a
deformed sand bed which is based on the Jackson and Hunt calculation [J.C.R. Hunt, Quart. J. R. Met.
Soc. 101, 929 (1975)]. Within this model, we investigate the stability of the sand bed and are able to derive
analytical scaling laws for the wavelength and phase velocity of the most dangerous mode. In the deep flow
limit, the model predicts the occurrence of a single mode of instability corresponding to the formation of
ripples. Predictions of our model are compared with previous models and available experimental data.

PACS. 45.70.-n Granular systems – 47.27.-i Turbulent flows, convection, and heat transfer – 47.54.+r
Pattern selection; pattern formation

1 Introduction

Ripples on sand are observed in seas (or rivers) but also in
deserts. One important issue is to identify the underlying
physical mechanisms responsible for the development of
sand ripples. Despite the abundant literature on the sub-
ject, the pertinent mechanisms have not been yet clearly
identified. Indeed, while it is largely admitted that the
destabilizing mechanism of a flat sand bed is due to the
fluid flow, the stabilizing one is still matter of debate. The
latter is very important because it balances the fluid flow
destabilizing effect and leads to the selection of a fastest
growing mode, which is expected to give an order of mag-
nitude of the ripple wavelength in the first stages of its de-
velopment. We propose here a new model for steady and
turbulent liquid flows in which we introduce a new stabi-
lizing mechanism resulting from the inertia of the grains.
We should emphasize that we deal with steady flows and
not with oscillatory flows, which constitute an other class
of flows.

First of all, we find it worthwhile to recall the basic
mechanisms of sand transport in a liquid and the strate-
gies used in the literature to describe the sand ripple for-
mation process. In a liquid, there exists two main modes
of sediment transport, the bed load and the suspended
load [1]. The latter is usually neglected in most models
since it becomes significative only at high flow rate. The
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bed load is the part of the load that is in continuous con-
tact during the transport; it corresponds to the grains that
are rolling over the sand bed surface. The transport rate
corresponding to the bed load is determined almost exclu-
sively by the fluid shear stress acting directly on the sand
bed. The strategy to investigate the ripple formation is
therefore to calculate the flow shear stress over the sand
bed and to deduce the sediment transport rate. Then, the
evolution of the bed profile is derived from mass conser-
vation law. In addition, it is usually assumed that the
hydrodynamical time is much small than the morpholog-
ical one. Therefore the essential difficulty is to calculate
the turbulent fluid flow over a deformed surface.

The first theoretical approaches were based on poten-
tial flow models [2–5] but they were not able to predict
the existence of sand ripple instability. The first theoreti-
cal models calculating explicitly the turbulent flow profile
over a deformed sand bed are due to Richards and to
Sumer et al. in the eighties [6,7]. In the Richards model
the turbulent flow is modeled via an eddy-viscosity ap-
proach based on an additional equation for the turbulent
kinetic energy. The outcomes of his model are the fol-
lowing. (i) The destabilizing mechanism for the bed in-
stability originates from hydrodynamics. The bed shear
stress, as in a laminar shear flow, is not in phase with the
bed profile, which generates the bed instability. (ii) The
stabilizing mechanism is found to originate from gravita-
tional force which impedes grain motion up stoss slopes
and aids it down lee slope. (iii) The competition between
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these two mechanisms leads to the existence of a band
of unstable modes corresponding to small scale structures
(that is ripples). It is found that the wavelength of the rip-
ple mode scales as λ ∼ f(φs)y0, where f is an increasing
function of φs characterizing the intern angle of friction
of the granular material, and y0 is the roughness height
of the bed. The estimation of the roughness height is dif-
ficult since it depends on intricate parameters such as the
flow shear stress, the height of the bed-load layer and the
grain diameter. As a first approximation, it scales with
the grain diameter and the value adopted generally on
erodible bed is y0 � 2 d − 4 d [8]. Taking this value, the
prediction of the model gives a ripple wavelength com-
patible with the experimental observations [9]. Sumer and
Bakioglu [7] extended the Richards model to include the
viscosity effect which is expected to be effective when the
viscous sublayer is greater than the grain diameter (i.e.,
when the particle Reynolds number is smaller than 25 [7]).
In such a regime, the ripple wavelength is found to scale
as λ � (ν/U∗) f(dU∗/ν), where ν is the fluid viscosity,
U∗ is the shear velocity, and f is a weakly increasing func-
tion of the particle Reynolds number. In contrast with
Richards results, the ripple wavelength appears therefore
not to scale with the grain size d.

At last, one should mention that arguments based on
the turbulent bursting process have been proposed to ex-
plain the ripple instability [10]. However, one can argue
that the ripple instability also occurs in laminar flows and
that therefore turbulence is not necessarily the pertinent
mechanism of instability [11].

None of these models take into account the effect of the
grain inertia which is expected to be effective at large par-
ticle Reynolds number. The model we propose is inspired
from that presented in [12] for laminar flows and is applied
to the case of turbulent flows. More precisely, we introduce
an additional stabilizing mechanism resulting from the ef-
fect of grain inertia. The bed shear stress over a deformed
bed is derived analytically on the basis of the calculation
of Jackson and Hunt [13], which allows to derive analytical
scaling laws for the most unstable mode. The analysis pre-
sented here is restricted to the case where the sand bed
is hydraulically rough, namely, for high enough particle
Reynolds number (Re∗p > 25).

The article is organized as follows. In Section 2, we
present the model equations for the turbulent flow and
the sediment transport. The basic solution of the model
corresponding to a flat sand bed is briefly analyzed in Sec-
tion 3. Section 4 is devoted to the presentation of the linear
stability analysis of the flat sand bed. The predictions of
the model (i.e., growth rate and drift velocity of unstable
modes) are analyzed. Finally, discussion and conclusion
are presented in Section 5.

2 Model equations

We consider a turbulent boundary layer that has devel-
oped over a planar rough wall of constant roughness. Pro-
vided that the horizontal scale of the bed deformation is
much less than the distance required for the boundary

layer to change appreciably, the width L of the bound-
ary layer may be taken as independent of the downstream
distance. Above the boundary layer, the flow is assumed
to be uniform (U = U∞ = Cst). Furthermore, we will
restrict ourselves to a two-dimensional analysis. In other
words, we assume that the bed deformation is invariant
along the horizontal direction perpendicular to the flow.
We first briefly present the equations for turbulent flows
together with the boundary conditions employed. Then
we describe the model used for sediment transport.

2.1 Turbulent flow equations

We use the hypothesis of quasi-stationarity. The flow is
considered to be stationary with respect to the typical
time of morphological bed deformation. This means that
the equations of the flow should be solved in the stationary
regime where the bed profile is static. At last, it should
be noted that the velocity profile over the sand bed is de-
termined for a flow free of sediment. The rate of sediment
transport is then estimated as a function of the bed shear
stress calculated for such a flow free of sediment. In other
words, we do not calculate the actual velocity flow profile
which results from the non-trivial coupling between the
flow and the transported grains. The explicit treatment
of this coupling would require a much more sophisticated
model.

The governing equations for a fully developed turbu-
lent flow are:

ρf (u · ∇)u = −∇p + η∇2u + ∇ · ¯̄τ , (1)
∇ · u = 0 . (2)

u = (U, V ) is the mean flow velocity, p the mean pressure,
and ¯̄τ is the Reynolds stress tensor which reads:

τxx = 2ρfνh
t (∂xU) , τyy = 2ρfνt∂yV , (3)

τxy = τyx = ρf [νt (∂yU) + νh
t (∂xV )] . (4)

νt and νh
t are respectively the vertical and horizontal tur-

bulent eddy viscosity. It turns out that the terms contain-
ing νh

t do not play a significant role in the analysis, and
only the vertical viscosity is important. Using the mix-
ing length theory [14], the vertical turbulent viscosity is
given by:

νt = l2(∂yU) , (5)

where l is the mixing length. Prandtl [14] assumed that
l increases linearly with the distance Y from the bed
surface: l = κY , where κ is the von Karman constant
(κ ≈ 0.4) and Y = y − h(x) [h(x) measuring the height of
the bed profile].

The boundary conditions at the distance L from the
bottom of the flow are:

U = U∞ and V = 0 , (6)

while at the sand bed, we use zero slip conditions:

U = V = 0 , (7)
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taken at y = h(x)+y0, where y0 is the effective roughness
of the sand bed.

We find it worthwhile to calculate, at this point, the
velocity profile of a turbulent boundary layer over a flat
surface in order to introduce the notion of shear velocity
that will be needed later on. In the case of a flow over a
flat surface, neglecting the viscous term the equation (1)
reduces to:

∂

∂y
τxy = 0 , (8)

where the shear stress τxy is given by:

τxy = ρfκ2y2

(
∂U

∂y

)2

. (9)

τxy is constant (i.e., independent of the height y) and
equal to the shear force σ per unit area exerted on the
bed (termed also the bed shear stress). We usually intro-
duce the shear velocity U∗ defined as U∗ =

√
σ/ρf . We

can rewrite equation (9) as:

∂U

∂y
=

U∗

κy
. (10)

Integrating this equation, we obtain the well-know loga-
rithmic profile for a turbulent flow near a rough wall:

U(y) =
U∗

κ
ln

(
y

y0

)
, (11)

where we recall that y0 is the bed roughness. For a fixed
bed made of single grain size d, it is found that y0 = d/30
in the case of hydraulically rough beds [15]. However, for
erodible bed, this value is increased: y0 ≈ 2d − 4d [8].

At this point, we shall point out that we will restrict
our analysis to hydraulically rough beds. This means that
we neglect the presence of the viscous sublayer which is
much smaller than the grain size in hydraulically rough
regimes.

2.2 Sediment transport

The volumetric transport law q is linked to the height h
of the bed profile via the mass conservation equation

∂h

∂t
= − ∂q

∂x
. (12)

In standard models, the sand flux is usually taken to be
equal to an ‘equilibrium’ value qeq estimated from a steady
and fully developed situation. The equilibrium sand flux
is generally evaluated using semi-empirical laws based on
the estimation of the bed shear stress [1]:

qeq = qb

(
Θ − Θc0

(
1 +

hx

tanφs

))n

, (13)

with qb = c
√

(s − 1)ρfgd3. The parameter φs is the fric-
tion angle of the sand, and Θ = σ/(ρf (s − 1)gd) is the

Shield number of the flow (σ being the local flow shear
stress at the bed and s = ρg/ρf the relative density of the
sediment with respect to the fluid density). Θc0 indicates
the critical Shields number above which sediments start to
move over a flat bed. For practical purpose, we will take
Θc0 = 0.2. Finally, the exponent n of the transport rate
varies from one author to one another. In the Peter-Meyer
law [1], n = 3/2. Note however that the value of the ex-
ponent is unimportant for a linear stability analysis.

The equilibrium sand flux corresponds to the maxi-
mum transport rate that a flow can sustain in an equilib-
rium situation (i.e., steady and fully developed) for a given
shear stress. In standard models, it is therefore implicitly
assumed that the transport rate is everywhere equal to
this equilibrium flux. However, in out-of-equilibrium situ-
ations, one can expect that the transport rate does not in-
stantaneously adapt to its equilibrium value. Indeed, if the
fluid velocity increases, new grains (initially at rest) are
dragged by the flow and they need some time to reach their
equilibrium velocity (due to their inertia). This character-
istic time can be associated with an equilibrium length leq

corresponding to the distance needed for the grains, ini-
tially at rest, to equilibrate their velocity with that of the
fluid. This concept of equilibrium length has been first in-
troduced in the context of aeolian sand transport [16,17]
and later applied in the case of sediment transport in a
liquid [12]. To describe the dynamics of sand transport,
we will use a simple relaxation law of the form:

∂q

∂x
= −q − qeq

leq
. (14)

It remains to evaluate the equilibrium length using
physical arguments. As already mentioned in [12], the
precise determination of leq is not a simple task due
to the complex feedback interaction between the mov-
ing grains and the fluid. As a first approach, we will
make a simplified calculation following the same lines as
those exposed in [12]. We will assume that the moving
grains roll on the sand surface and undergo a drag force,
Fd = 0.125 cd ρfπd2 v2

r , where vr is the relative velocity of
the grains with respect to that of the fluid and cd is the
drag coefficient. The coefficient cd will be taken to be equal
to cd = 24./Re + 6./(1 +

√
Re) + 0.4 with Re = dvr/ν.

Within these approximations, one obtains:

leq = f(dUeq/ν)
ρf

ρg
d , (15)

where Ueq is the equilibrium velocity of the grains and
f is a function of the dimensionless number dUeq/ν. In
the case of hydraulically rough beds, the order of mag-
nitude of Ueq is expected to be given by the shear ve-
locity U∗ =

√
σ/ρf . Therefore, we will set Ueq = ξU∗

where ξ is a numerical constant of order of few units. We
will also introduce the turbulent particle Reynolds num-
ber Re∗p defined as Re∗p = dU∗/ν. The variation of leq with
the particle Reynolds number is shown in Figure 1. When
Re∗p < 1, f ≈ 0.035 ξRe∗p, and for Re∗p > 104, f reaches a
constant equal to 3.3. For intermediate particle Reynolds
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Fig. 1. Equilibrium length versus ξRe∗p. Re∗p is the turbulent
particle Reynolds number: Re∗p = d U∗/ν. For Re∗p < 10, leq ∼
Re∗p d (dotted curve), whereas leq becomes independent of Re∗p
for large Re∗p (dashed curve).

number (i.e., 1 < Re∗p < 103), f can be approximated by:
f(ξRep) ≈ 0.035 ξRep/[1 + 0.087(ξRep)0.75].

3 Basic state

The basic state corresponds to the solution of the problem
equations for which the sand bed remains flat. In that case,
we have already see that the velocity profile reads:

U0(y) =
U∗

κ
ln

(
y

y0

)
(16)

with U∗ =
√

σ0/ρf (where σ0 is the bed shear stress).
The total flux of sediment transport therefore reads:

q0 = c

√
(s − 1)ρf g d3

((s − 1)gd)n

(
U∗2

(s − 1)gd
− U∗2

c

(s − 1)gd

)n

, (17)

where U∗
c is the critical shear velocity above which sedi-

ment starts to move: U∗2
c = (s−1)gdΘc0. We recall that c

is a numerical constant. For n = 3/2, the sediment trans-
port rate takes the following simple form:

q0 = c
ρf

(s − 1)g
(
U∗2 − U∗2

c

)3/2
. (18)

4 Linear stability analysis

In order to study the stability of the flat sand bed, we
perturb the sand bed profile so that it looks like h =
h1e

ikx+ωt, where k is the wavenumber characterizing the
spacing of the crests and ω denotes the growth rate of the
bed pattern.

4.1 Perturbed flow

We first calculate the flow perturbation, the bed profile
being kept fixed. The calculation strategy used here is
inspired from that developed by Jackson and Hunt [13]
and improved later by Hunt, Leibovich and Richards, and
Weng and his collaborators [18,19]. This is a lengthy and
tough calculation, that we present in Appendix A in a
reassessed version accessible to non-specialists of turbu-
lent flows. One should also add that we treat the situa-
tion where the sand bed perturbation is spatially periodic
whereas the former analyses investigated the case of a spa-
tially isolated perturbation of the bed.

It is found that the bed shear stress over a deformed
sand bed is given by:

σ = σ0 + σ1 = σ0 + σ̂1e
ikx , (19)

where
σ̂1 = 2Ah1|k|[1 + δ(1 + 4γ + iπ)] . (20)

δ � 0.65(ky0)0.15, δ1 = ln−1(1/ky0), γ is the Euler con-
stant (γ = 0.57) and A = δ2/δ2

1 (see Appendix A for more
details).

4.2 Growth rate and drift velocity

We are now in position to calculate the growth rate ω
of the perturbation. Linearizing equations (12) and (14)
together with equation (13), we get:

ω = n qb Θn
c0 µn−1

[
−i

Θ1

Θc0

k

h1
− k2

tan φs

]
(1 − ikleq)
(1 + k2l2eq)

,

(21)
where µ = (Θ0−Θc0)/Θc0 (or equivalently µ = U∗2/U∗2

c −
1) and Θ1 = σ̂1/(s−1)ρfg d. µ measures the distance from
the threshold of grain motion and will be referred to as
the relative shear stress excess.

The dispersion relation expanded in the long wave-
length limit yields:

Re(ω) = ω0 µn−1

[
2 π Aδ (1 + µ) k|k| d2 − k2 d2

tan φs

−2 A (1 + µ)k2|k| leqd
2

]
, (22)

Im(ω) = −2 ω0 Aµn−1(1 + µ) k|k|d2 . (23)

We set ω0 = n(qb/d2)Θn
c0. The real part of the growth

rate is composed of three terms. The first one plays a
destabilizing role and is due to the fluid flow. The two
next terms are stabilizing ones, one is due to gravity and
the other to grain inertia. One can note that the fluid flow
effect and the gravity effect both scale as k2. This means
that if the latter prevails, all modes are stable and the
bed surface is stable. On the contrary, in the case that
the destabilizing effect of the fluid flow is predominant,
one expects the existence of a band of unstable modes.
Let us estimate the magnitude of these two contradictory
mechanisms and determine the critical shear stress excess,
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Fig. 2. Correspondence between the particle Reynolds number
and the relative shear stress excess µ. θ0c = 0.2, s = 2.7, ξ = 5
and ν = 10−6 m2/s.

µc, for which both effects have the same magnitude. One
obtains:

µc = (2 Aδ π tan φs)
−1 − 1 . (24)

When µ < µc, the gravity effect prevails and the flat bed is
stable. An estimation of the parameters A and δ gives: A =
2 and δ = 0.4. We took standard values for the roughness
y0 and the wavenumber k (y0 ≈ d and 1/k ≈ 200 d).
Note however that an accurate evaluation of y0 and k is
not necessary here since the parameters A and δ1 depend
only weakly on them (see previous section). Using these
values and taking a standard value for the intern angle of
friction (φs = 30◦), we get µc ≈ −0.86. A negative value
of µ means that the bed shear stress is below the critical
shear stress corresponding to the onset of grain motion.
As a consequence, one can conclude that as soon as grain
motion is possible (i.e., µ > 0), the stabilizing gravity
effect is unable to overcome the destabilizing effect of the
fluid flow. In other words, the sand bed is always unstable
when the sand transport is possible. Gravity effect plays
a minor role and it is therefore legitimate to neglect it.

At higher wave numbers, the destabilizing effect of the
fluid flow will be balanced by the stabilizing effect of grain
inertia (that scales as k3) leading to the selection of a
fastest growing mode. Neglecting the gravity effect, the
fastest growing mode can be easily estimated:

kmax leq =
2 πδ

3
, (25)

or equivalently

λmax =
2π

kmax
=

3
δ
leq . (26)

We recall that leq = f(ξRe∗p) (ρf/ρg)d where Re∗p =
U∗ d/ν is the turbulent particle Reynolds number whose
variation with the relative shear stress excess µ is shown
in Figure 2. As mentioned previously, our analysis is ex-
pected to be valid in the hydraulically rough regime,
namely, when the particle Reynolds number is greater
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Fig. 3. Wavelength of the most dangerous mode versus the
particle Reynolds number. The vertical lines indicate the values
of the critical particle Reynolds number (corresponding to the
onset of grain motion) respectively for d = 200, 500, 800 µm.
Parameters: θ0c = 0.2, s = 2.7, ξ = 5 and ν = 10−6 m2/s.

than 25. Sand beds constituted of coarse grains (d >
500 µm) are hydraulically rough at the onset of grain mo-
tion and above. In the case of finer grains, the sand bed
becomes hydraulically rough only at large shear stress ex-
cess (see Fig. 2).

The evolution of the wavelength of the most danger-
ous mode as a function of the particle Reynolds number is
shown in Figure 3. One can note that λmax increases with
the particle Reynolds number and reaches an asymptotic
value at large Re∗p. In the latter regime (Re∗p > 104), the
equilibrium length becomes independent of the shear ve-
locity U∗ [leq ≈ 3.3(ρg/ρf)d] and one obtains the following
scaling for λmax:

λmax = 100.
ρg

ρf
d . (27)

In the above estimation, we took δ = 0.4. In water for
grains of diameter d = 200 µm, we obtain λmax ≈ 6 cm.

It can be interesting to replot the wavelength of the
most dangerous mode as a function of the shear stress
excess close to the onset of grain motion (see Fig. 4).
One sees that the dimensionless wavelength λmax/d mod-
erately increases with increasing shear stress excess and
exhibits a significative sensitivity to the grain diameter.

We should finally note that all the unstable modes have
a growth rate with a negative imaginary part, indicating a
drift in the direction of the flow. The drift velocity of a
mode k is easily calculated by: vd = −Im(ω)/k. The ex-
pression of the drift velocity of the most dangerous mode is
given in Table 1 for moderate and high particle Reynolds
number.

5 Discussion and conclusion

5.1 Summary of results

We have presented an analytical model for the instability
of a sand bed sheared by a turbulent flow. The turbulent



438 The European Physical Journal B

Table 1. Expressions for the wavelength and the drift velocity of the most dangerous mode at moderate and large particle
Reynolds number. Re∗p0 is the critical particle Reynolds number at the onset of grain motion: Re∗p0 = d (s − 1)gdΘ0c/ν.

10 < Re∗p < 103 Re∗p > 104

λmax
0.1
δ

ξRe∗p
1+0.087(ξ Re∗p)0.75 s d 10

δ
s d

vd 60. (A δ n c)
√

(s − 1) ρfgd 60. (A δ n c)
√

(s − 1) ρfgd

× (Re∗2
p −Re∗2

p0)n−1

Re∗2n
p0

(Re∗p/ξ)[1 + 0.087(ξRe∗p)0.75] × (Re∗2
p −Re∗2
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Fig. 4. Wavelength of the most dangerous mode versus the
excess shear stress µ for different grain diameters. Parameters:
θ0c = 0.2, s = 2.7, ξ = 5 and ν = 10−6 m2/s.

flow profile over a perturbed surface is derived on the basis
of Jackson and Hunt calculation. The sand transport is
assumed to be ensured by a single transport mode which
consists of a layer of grains rolling on the surface of the
sand bed. The evolution of the bed profile is thus deduced
from mass conservation of the grains. The main outcomes
of the model follow.

(i) We found a single mode of instability corresponding
to the formation of ripple. This instability results from the
competition between the destabilizing mechanism due to
fluid flow (resulting from the phase lag between the bed
shear stress and the bed profile) and a stabilizing effect
which originates from the inertia of the grains (charac-
terized by a characteristic length leq corresponding to the
distance needed for a grain at rest to reach its equilib-
rium velocity). The gravity effect which is usually evoked
as the pertinent stabilizing mechanism is found to be inef-
ficient here. The wavelength of the most dangerous mode
is found to scale as the equilibrium length leq which is
given by leq = f(ξRe∗p) (ρg/ρf) d where f is a function of
the particle Reynolds number Re∗p = dU∗/ν and ξ rep-
resents the ratio between the equilibrium velocity Ueq of
the rolling grains and the shear velocity U∗.

Our results differ from those of Richards model [6].
He found using a rotational flow model based on an eddy
viscosity approach and coupled with the Peter-Meyer law
for the sediment transport that the most dangerous mode
varies linearly with the roughness height y0 of the bed:
λmax ∼ f(φs)y0 where f is a increasing function of the

friction angle φs of the sand. In our model, the roughness
height plays a minor role since it appears in the prefactor
of the wavelength of the most dangerous mode via a loga-
rithmic dependence. Furthermore, in Richards model the
dominant stabilizing mechanism is due to gravity. If the
gravity effect is neglected, modes of arbitrary small wave-
length are unstable. This contrasts again with our model
where the pertinent stabilizing mechanism originates from
the dynamics of the moving grains. Gravity is not found
to be efficient to stabilize the modes of short wavelengths
(it scales as k2, in the same manner as the destabilizing
process driven by the fluid, but with a much smaller pref-
actor; see Eq. (22)). As a conclusion, the outcomes of the
turbulent flow models appears to be very sensitive to the
way of modeling the turbulence. It seems therefore crucial
to make additional effort to better describe the turbulent
flows over a wavy surface.

5.2 Comparison with available experimental data

As noted by Coleman et al. [9], although the huge num-
ber of sand ripple experiments in water reported in the
literature, only a few of them can be used for a compari-
son with stability theory predictions. Indeed, most of the
experimental data concern the equilibrium ripple pattern
which is reached at long times after a nonlinear transient.
The latter is markedly different from the initial pattern
observed at the first stages of its development. The wave-
length of the final bedform is usually much greater than
that of the initial ripple pattern.

Coleman et al collected in [9] some experimental re-
sults which can be used for the verification of the theoret-
ical predictions based on linear stability analysis. The con-
clusion drawn from these experimental data follow. First,
it seems that there is a slight increase of the initial rip-
ple wavelength λ with the applied shear stress (within
the range of shear stress investigated, which corresponds
to values of the relative shear stress excess, µ, compris-
ing between 0 and 10). Second, the ratio λ/d appears to
be a slightly decreasing function of grain diameter d and
fluctuates between 150 and 300 according to experiments.
Recent experimental investigation on sand ripples induced
by water shear flow confirms the above features [20]. The
predictions of our model are partly in agreement with ex-
perimental outcomes. At low relative shear stress excess
(i.e., small values of µ), our results showed that the ra-
tio λ/d slightly increases with increasing shear stress. In
addition, one found that λ/d gets larger with increasing
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grain diameter (see Fig. 4). The last feature is not corrob-
orated by the experiments. In contrast, at high relative
shear stress excess, we found that the ripple wavelength
is independent of the shear stress and varies linearly with
the grain diameter: λ ≈ 300 d [see Eq. (27)].

The agreement between experimental results and the-
oretical predictions is not fully satisfactory and further
efforts in theoretical modeling, as well as in experimental
investigation, should be done. In particular, it would be
strongly needed to investigate in details, both theoretically
and experimentally, the erosion and deposition processes
at the grain scale in order to improve our understanding
of the sediment transport.

5.3 Conclusion

We presented an analytical study about the ripple for-
mation process under turbulent liquid flows in the case
of hydraulically rough beds. We proposed a model where
the flow over a deformed sand bed is calculated explicitly
and the sand transport law accounts for the grain inertia.
We derived analytical expressions for the most unstable
mode (which is expected to give the order of magnitude
of the ripple wavelength), growth rate and drift velocity.
The prediction of the model agrees only partially with the
available experimental data. There is therefore a strong
need to improve the modeling. Several aspects of the sand
transport process should be further investigated in the
near future. (i) In our model, we do not calculate explic-
itly the modification of the flow profile due to the presence
of the grains in the fluid. It would be therefore important
to explicitly take into account the coupling between the
transported grains and the flow in order to have an accu-
rate estimation of the equilibrium velocity of the moving
grains. (ii) A further effort should be made in the mod-
eling of the erosion and deposition processes at the grain
level. This effort is is crucial to improve the description
of the sand transport dynamics. (iii) Another important
issue concerns the nonlinear process which leads to the fi-
nal equilibrium ripple pattern. It would be interesting to
develop a nonlinear analysis in order to understand the
mechanisms of the coarsening process.

I am grateful to C. Misbah for fruitful and enlightening discus-
sions.

Appendix A: Calculation of the turbulent flow
over a deformed sand bed

To calculate the flow over a deformed sand bed, the stan-
dard strategy is to divide the boundary layer into an
inviscid outer region and a thin inner region where the
perturbation shear stresses affect the flow (see Fig. 5).
The physical reason for this is the following. In the region
close to the surface of the perturbed sand bed (the inner
region), the horizontal velocity U is given to first order ap-
proximation by the velocity above a flat sand bed taken

h(x,t)

x

y

Static sand bed

Inner region

Outer region

l

Fig. 5. Schematic diagram of flow regions over a deformed
sand bed.

at the same the height with respect to ground level. Thus
U(x, y) = U0(Y ) where Y = y − h(x). Continuity implies
the existence of a vertical velocity V = hx U0(Y ). But
sufficiently far above the bed the horizontal velocity must
equal the undisturbed velocity U0(y) and the vertical ve-
locity must be zero. This suggests therefore the existence
of an outer region of flow where U = U0(y) + U1(x, y)
(the perturbation U1 must vanish as y → ∞). But in this
outer region the perturbation velocity will induce a pertur-
bation pressure P1. Then the fact that P1 must be con-
tinuous means that there exists a perturbation pressure
gradient in the inner region. Thus the horizontal velocity
in the inner region can not simply be equal to the dis-
placed velocity U0(Y ) but has a perturbation U1(x, Y ), so
that U = U0(Y ) + U1(x, Y ).

A.1 Inner region

In the inner region, as explained previously, we express
the perturbed quantities in terms of the displaced coordi-
nates (x, Y ) where Y = y−h(x). The perturbed quantities
will be written as:

U(x, y) = U0(Y ) + U1(x, Y ) , (28)
P (x, y) = P0 + P1(x, Y ) . (29)

The subscript 0 refers to the basic solution corresponding
to a flat sand bed and the subscript 1 denotes perturbed
quantities. From the continuity equation, one can express
the vertical component of velocity as

V (x, Y ) = hx [U0(Y ) + U1(x, Y )] + V1(x, Y ) , (30)

where
∂U1

∂x
+

∂V1

∂Y
= 0 . (31)

In the further analysis, we will require that hx ∼ h1k
is a small quantity which is at least of the same order
as the perturbed velocity U1/U∗. This will be checked a
posteriori.

The component of the perturbed Reynolds stress ten-
sor reads

τxy = ρfκ2Y 2

(
∂U

∂y

)2

= σ0 + σ1 + h.o.t. , (32)

τyy = 2ρfκ2Y 2

(
∂U

∂y

) (
∂V

∂y

)
= ς1 + h.o.t. , (33)
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where

σ0 = ρfU∗2 , (34)

σ1 = 2ρf κ U∗Y
∂U1

∂Y
, (35)

ς1 = 2ρf κ U∗Y
∂V1

∂Y
. (36)

We recall that τxx = 0 because the horizontal turbulent
viscosity is neglected.

Plugging equations (28),(29), (30), (32 and (33) into
the momentum and mass conservation equations for the
flow and retaining only the first order terms, we obtain:

U0
∂U1

∂x
+ V1

∂U0

∂Y
= − 1

ρf

∂P1

∂x
+

1
ρf

∂σ1

∂Y
, (37)

U0
∂V1

∂x
= − 1

ρf

∂P1

∂Y
+

1
ρf

[
∂σ1

∂x
+

∂ς1
∂Y

]
, (38)

∂U1

∂x
+

∂V1

∂Y
= 0 . (39)

Taking the Fourier transform with respect to the vari-
able x, we can rewrite the above equations as

ik ln
(

Y

y0

)
Û1 +

V̂1

Y
= −κ(ik)P̂1 + 2κ2

(
Y

∂Û1

∂Y

)
, (40)

ik ln
(

Y

y0

)
V̂1 =

− κ
∂P̂1

∂Y
+ 2κ2

[
ikY

∂Û1

∂Y
+

∂

∂Y

(
Y

∂V̂1

∂Y

)]
, (41)

ikÛ1 +
∂V̂1

∂Y
= 0 , (42)

where Û1 = TF (U1/U∗), V̂1 = TF (V1/U∗), and P̂1 =
TF (P1/ρfU∗2). TF stands for the Fourier transform.

We shall introduce a stretched variable Z = Y/l, where
we recall that l is the width of inner region. We can rewrite
the equations of the flow in terms of the stretched variable.
We get:

ikl

(
ln

l

y0
+ lnZ

)
Û1 +

V̂1

Z
= −κ(ikl)P̂1

+2κ2 ∂

∂Z

(
Z

∂Û1

∂Z

)
, (43)

ikl

(
ln

l

y0
+ lnZ

)
V̂1 = −κ

∂P̂1

∂Z

+2κ2

[
i(kl)Z

∂Û1

∂Z
+

∂

∂Z

(
Z

∂V̂1

∂Z

)]
, (44)

i(kl) Û1 +
∂V̂1

∂Z
= 0 . (45)

The inner region is defined as the layer where the Reynolds
stress tensor term competes with the inertial term. The
width of the inner region will be therefore determined by
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Fig. 6. Depth of the inner region l as a function of 1/ky0.

the balance between these two terms at Y = l (or Z = 1).
This gives

kl ln
l

y0
Û1 � 2κ2Û1. (46)

As a consequence we will define l such that kl ln(l/y0) =
2κ2. The graph of l/y0 as a function of 1/ky0 is shown in
Figure 6. To go further, we will introduce a small parame-
ter δ = 1/ ln(l/y0) = kl/2κ2. δ is small as long as the wave-
length of the perturbation is much greater than l. This
means that we examine the long wavelength limit. More
precisely, the range of values of ky0 for which δ is small (let
say δ < 0.2) is found to be such that 10−6 < ky0 < 10−2.
Over this range, the width of the inner region can be ex-
pressed within 5% by the following approximate expres-
sion:

l

y0
= a

(
1

ky0

)b

, (47)

with a = 0.21 and b = 0.85. Using this formula, we can
derive an approximate expression for δ

δ =
a

2κ2
(ky0)1−b � 0.65 (ky0)0.15 . (48)

The strategy is now to expand Û1, V̂1 and P̂1 in power
of δ:

Û1 = ε(Û (0) + δÛ (1) + . . . ) , (49)

V̂1 = ε(δV̂ (0) + δ2V̂ (1) + . . . ) , (50)

P̂1 =
ε

δ
(P̂ (0) + δP̂ (1) + . . . ) . (51)

ε is a small parameter which is introduced to provide a
scale for the perturbation velocities and will be deter-
mined later on. One should note that the perturbation
velocity Û1 scales as ε whereas the pressure perturbation
is expected to scale as ε/δ. This is due to the fact that
the pressure gradient must be of the same order as the
acceleration and the stress gradient term in equation (43)
since the velocity perturbation is driven by the pressure
perturbation. To zero and first order, equations (43–45)
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yield

∂

∂Z

(
Z

∂

∂Z
Û (0)

)
− iU (0) = iκP̂ (0) , (52)

∂P̂ (0)

∂Y
= 0 , (53)

i2κ2U (0) +
∂V (0)

∂Z
= 0 , (54)

∂

∂Z

(
Z

∂

∂Z
Û (1)

)
− iÛ (1) = iκP̂ (1) + i ln ZÛ (0) +

V̂ (0)

2κ2Z
,

(55)

∂P̂ (1)

∂Y
= 0 , (56)

i2κ2U (0) +
∂V (0)

∂Z
= 0 , (57)

which should be completed by the boundary conditions.
As Z → 0, the solution should match the velocity profile
very close to the surface which is assumed to be logarith-
mic:

U =

√
σ/ρf

κ
ln(

Y

y0
) , (58)

where σ = σ0+σ1 is the total bed shear stress. Expanding
σ1 in power of δ [i.e., σ1 = ε(δσ(0) + δ2σ(1))] and plugging
this expansion into equation (58), we find that the per-
turbed velocity Û1 should obey the following boundary
conditions as Z → 0:

Û (0) ∼ σ̂(0)

2κ
, (59)

U (1) ∼ σ̂(0)

2κ
ln Z +

σ̂(1)

2κ
. (60)

The general solution of the equation for Û (0) [Eq. (52)]
is of the form:

Û (0) = AK0(2
√

iZ) + B I0(2
√

iZ) − κP (0) (61)

K0 and I0 are the modified Bessel functions whereas A
and B are integration constants to be determined by use
of the boundary conditions which expressed in terms of
the stretched variable read:

Û (0)(Z → ∞) < ∞ , (62)

Û (0)(Z → 0) =
σ̂(0)

2κ
. (63)

Taking advantage of the boundary conditions, we obtain
A = B = 0 and σ̂(0) = −2κ2P̂ (0). From continuity
eq. (54), we obtain:

V (0) = 2iκ3P (0)Z . (64)

One should go to next order to get a non-trivial solu-
tion for U . The solution of the equation for U (1) [Eq. (55)]
reads

Û (1) = C K0(2
√

iZ) + D I0(2
√

iZ) − κP̂ (0) [1 − ln Z] .
(65)

C and D are integration constants to be determined by
use of the boundary conditions:

Û (1)(Z → ∞) < ∞ , (66)

Û (1)(Z → 0) =
σ̂(0)

2κ
ln Z +

σ̂(1)

2κ
, (67)

which yield:

C = −4κP̂ (0) , D = 0 , (68)

σ(1) = −2κ2 (1 + 4γ + iπ) . (69)

γ = 0.57 is the Euler constant. It should be noted that
in the derivation of Û (1) we assumed that the first or-
der perturbation pressure, P̂ (1), is reduced to a zero con-
stant. This approximation allows to shorten the calcula-
tions without altering the final result.

The solution Û (1) can be rewritten as:

Û (1) = −κP̂ (0)
[
1 − ln Z − 4K0(2

√
iZ)

]
. (70)

Using expressions of σ̂(0) and σ̂(1), one can estimate the
perturbed bed shear stress σ1 which reads:

σ̂1 = −2εκ2δP̂ (0) [1 + δ(1 + 4γ + iπ)] . (71)

The pressure P̂ (0) will be deduced from the examination
of the flow in the outer region.

A.2 Outer region

In the outer region, we express the perturbed quantities
in terms of the original coordinates (x, y). Therefore the
perturbed quantities will be written as:

U = U0(y) + U1(x, y) , (72)

V = V1(x, y) , (73)

P = P0 + P1(x, y) . (74)

In the outer region the Reynolds stress is negligible in
comparison with the inertial terms so that the equations
of the flow read to first order:

ik ln
(

y

y0

)
Û1 +

V̂1

y
= −κ(ik)P̂1 , (75)

ik ln
(

y

y0

)
V̂1 = −κ

∂P̂1

∂y
, (76)

ikÛ1 +
∂V̂1

∂y
= 0 . (77)

We recall that Û1 = TF (U1/U∗), V̂1 = TF (V1/U∗) and
P̂1 = TF (P1/ρfU∗2).
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The vertical length scale in the outer region is expected
to be of order of 1/k and it is therefore natural to rewrite
ln(y/y0) as:

ln(y/y0) = ln(1/ky0) + ln(yk) . (78)

As y ∼ 1/k, the later expression can seen as an asymp-
totic development as a function of the small parameter
ln−1(1/ky0). We therefore expand Û1, V̂1 and P̂1 in power
of δ1 = ln−1(1/ky0):

Û1 =
ε

δ

(
δ1û

(0) + δ2
1û

(1) + . . .
)

, (79)

V̂1 =
ε

δ

(
δ1v̂

(0) + δ2
1 v̂

(1) + . . .
)

, (80)

P̂1 =
ε

δ

(
p̂(0) + δ1p̂

(1) + . . .
)

. (81)

The perturbation pressure has been taken to scale as
ε/δ since it has the same order of magnitude in the outer
region as in the inner region. To leading order, equa-
tions (75-77) yields:

û(0) = −κp̂(0) , (82)

ikv̂(0) = −κ
∂p̂(0)

∂y
, (83)

ikû(0) = −∂v̂(0)

∂y
. (84)

Combining these equations, we get a closed equation
for v̂(0):

∂2v̂(0)

∂y2
− v̂(0) = 0 , (85)

which is subject to the following boundary conditions:

v̂(0)(y → ∞) < ∞ , (86)

v̂(0)(yk → 0) = ikh1
δ

κδ2
1ε

. (87)

The last condition results from the matching of the in-
ner and outer solution of the vertical velocity. Since by
definition v(0) is O(1), we deduce the magnitude of ε:

ε =
δ

κδ2
1

h1k . (88)

Taking advantages of the boundary conditions, we find:

v̂(0) = ie−y|k| . (89)

We can therefore deduce the expression for the pressure:

p̂(0) = −|k|
κk

e−|k|y . (90)

The pressure at the boundary between the inner and the
outer region is then given by p̂(0)(yk → 0) = P̂ (0) =
−|k|/(κk). Plugging the expression for the pressure into
equation (71), we get the sought after expression of the
shear stress at the sand bed:

σ̂1 = 2 Ah1 |k| [1 + δ(1 + 4γ + iπ)] , (91)

where A = δ2/δ2
1 . Expression (91) is a similar form as that

found in [18,19] for an isolated perturbation.
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